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Density-noise power fluctuations in vibrated granular media
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The noise power spectra of the fluctuations in density of a vibrated column of granular material are found to
be time dependent. Spectral analysis of these noise power fluctuations shows nontrivial frequency depen-
dences. The noise powers at different frequencies are also found to fluctuate in a partially correlated way. In
most instances, the slow variations of the noise are strongly correlated over a broad range of frequencies. These
results indicate that highly cooperative interactions exist between fluctuators. In contrast, effects of such
strongly coupled fluctuators are absent in the one-dimensional parking-lot-model, one of the simplest systems
used to provide a model for recent granular compaction experiments.
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Many of the unusual static and dynamic properties ofwhich thus contain all possible information about the signal
granular systems stem from the partial stability of a largg15]. For systems in which the number of independent fluc-
number of particle configurationgstate$ at steady-state tuating entities is relatively small, the non-Gaussian proper-
macroscopic densitiglsl]. Transitions among these various ties of higher-order correlations contain additional informa-
microscopic states are driven by nonthermal excitatioes, ~ tion [16]. The statistical signatures we measure clearly
mechanical vibrationthat lead to fluctuations in observable demonstrate that the noise power is sensitive to a small num-
guantities such as the density. Recent granular compactidmer of effective fluctuators that exhibit cooperative kinetics.
experiment§2—4] have shown that the density of a vibrated  The results presented here are based on time-series of the
granular assembly exhibits glassy-like relaxation dynamicsglensity fluctuations from previously reported work on granu-
and a nontrivial fluctuation spectrum. At issue is the naturgar compactiori3], and so we shall not comment extensively
of the microscopic dynamics that underlie the macroscopigpon the experiment. Briefly, the experiment involved mono-
response of a granular material subject to vertical vibrationjisperse spherical glass beads that were confined inside a
(tapping. o . . cylindrical tube that was vibrated vertically with discrete

Probing the interior structure of a three-dimensiof&i) shakes or “taps” with an intensity parametrized Hy
granular assembly, however, is severely hampered by the alg, wherea is the peak acceleration during a tap aid

mater_lal S opacity, alth_ough amenable to expensive Imaging, e gravitational acceleration. The fraction of volume occu-
techniqueg5]. A complimentary approach has been to com-

pare more readily available data with simulations of model$Ied by the beads, or equalen_tly, the density, was measured
for vibrated powders. In many seemingly different treat_after each tap near the top, middle, and bottom of the tube

ments[3,6—13, most of which are based on geometrical using a capacitance technique that ayeraged over roughly
models of “parking”[6,9] or simulating the motion and sub- 6000 beads. Here, we are concerned with the statistical prop-
sequent relaxation of ,particléi’ 8,10,11, the resulting dy- erties of these density fluctuations after the system has re-

namics have some striking similarities to the experimental@x€d to & steady-state densjiy(I’). _ _
results[2,3,14. Similarities include: The logarithmic time ~ Figure 1 shows an example of the complicated time de-
course of the density relaxation, irreversible-reversiblePendence of the noise power of the density fluctuations,
curves, and the power spectrum of density fluctuations. Mor&here time is measured in taps. Such time records are ob-
detailed characterization, however, is needed to determine thined as follows. A power spectrurs(f ), of the density
the models really capture the processes underlying the olfluctuations is calculated by squaring the absolute value of
served kinetic behavior. the Fourier transform of a 1008-point time series. Frequency,
We have previously reported the average properties of thé has units of inverse taps. To reduce the amount of numbers
noise power of density fluctuations in a vibrated column ofto be dealt with and the fractional uncertainty associated with
beads[3]. In this paper we examine the time-dependentsampling a random signal, each spectrum is summed into
variations of the noise power and report on non-Gaussiageven octavesQ; with i=1,2,...,7. Thelowest octave,
properties, i.e., higher moment correlation functions of theO;, is roughly 0.004—0.007 tap§ consisting of four power
density fluctuations. These properties can be used to distirspectra points, and the highest octa®s, containing 192
guish between different kinetic models that exhibit identicalpower spectra points ranges from 0.19 to 0.38 tap$his
power spectra. The power spectrum of a signal is simply therocedure was repeated, up to 536 times for our longest
Fourier transform of the two-point autocorrelation function. density-time series, to generate the time series of octave
For a Gaussian process, all higher-order correlations arpowers shown in Fig. 1. The noise power magnitude exhibits
uniquely expressible in terms of two-point correlations,large variations as a function of time, often with strong cor-
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FIG. 1. Noise power as a function of tinfeeasured in tapss z /o<:7‘<:§:
shown for experimental data takenl&t 5.9 near the bottom of the § :/
column of beads. The noise power for each octave is normalized by £
the standard deviation of the expected Gaussian variance and offset =, 10"}
for clarity. The logarithmic center frequenciésits of taps?) for b6 e—I=59
each octave are octave 1, 0.0053; 2, 0.0094; 3, 0.018; 4, 0.035; 5, —a—T-68 middle (b)
0.068; 6, 0.14; 7, 0.27. 10° ‘
relations of the noise power between differing octaieg., g 0% //A ",
see features indicated by the arrows in Fig. 1 _z a e,
The frequency dependence of the fluctuations in noise s o«
power can be used to distinguish between systems involving gj: 10“;/
interacting fluctuators and those involving the superposition eT=59
of a fixed set of independent two-state systgifiSS [16]. 5| —A-T=68 . bottom (c)
Simple superpositions of single-rate processes with a distri- 101()»5 10" 10°
bution of rates are often invoked in models for electronic f, (units of taps™)

noise[16] and recently for granular compacti¢,9]. Each .

TSS is fully characterized by two characteristic rates; 1/ FIG. 2. Non-Gaussiafiexcess second spectrurt,S,, of the

and 1k, for switching between the two states and contrib-ﬂUCtPf‘t'ons in the noise power in the frequ_ency range 0.19 to 0.38
. . _ taps - (octave 7 for experimental data acquired néay the top,(b)

utes a Lorentzian to the power spectrum, i%(f)=7/(1 .

260 2 . _— . _the middle, andc) the bottom of the column of beads. The symbols
+4m°f?77). Since a TSS has no c.harac.:terlsltlc frequenc'e%present second-spectrum octave sums, so tisat-d/f, depen-
much below 1#= 1/7,+ 1/7,, fluctuations in noise power in  gence appears horizontal on these plots. Similar dependen&s of
some frequency band nearrWill be nearly frequency inde-  on £, are found for octaves 4 through 6. Second-spectra for the
pendent. In contrast, systems with more complicated fluctuaower frequency octaves takenlat 5.9 and 6.8, and for all octaves
tors, e.g., interacting TSS having different characteristicatI'=4.3 and 5.1, were dominated by the expected Gaussian con-
switching rates, often exhibit fluctuations in noise power thatribution due to the finite number of samples.
are frequency dependent.

The frequency components to the noise power fluctuai/f spectral dependence will appear flat and a frequency-
tions in Fig. 1 are clearly seen by Fourier transforming andndependentwhite) spectrum will have slope-1.
squaring the time record of the noise power for a given oc- The dependence @&, on f, turns out to be nontrivial at
tave having a logarithmic center frequendy, For each oc- all three depths in the pile. Approximating,(f,) by a
tave the so called “second-spectrumS;(f,,f;), is calcu- power-lawszocfz’ﬁ, the exponenp ranges from 0.5 to 0.8
lated at the frequencfy,, determined by the time scale of the near the bottom and middle of the pile. A power-law form
fluctuations in Fig. 1. The excess second-spectrum of théor S,(f,) is less appropriate at the top of the pile where
density fluctuations is calculated by subtracting the expecte8,(f,) apparently exhibits a broad maximum, reflective of a
Gaussian contributiofsee discussion below and R¢L7)) characteristic rate at which the ordinary power spectrum is
from S,(f,,f;). Since each data point making up an octavebeing modulated. These second spectra rule out models
time series requires 1008 density samplings, practical corbased on simple superpositions of stationary independent
siderations limit the frequency span of the second-spectrumSS, which would exhibit a white second spectr[48].
to 64 spectral points. For clarity, we reduce the statistical We now consider whether the individual components of
fluctuations in amplitude at the expense of frequency resolus(f ), the components that are being modulated on longer
tion by summing the excess,(f,,f;) into octaves. The re- timescales, come from two-state systems that contribute
sulting spectra for the highest octave, are plotted in Fig. Lorentzians toS(f) or from multistate fluctuators, which
2 for the two intensities’=5.9 and 6.8, which had the long- contribute broader spectra. The correlations in the variations
est octave time seriegFor the lowest four octaves, the in the noise power between differing frequency octaves pro-
Gaussian background is comparable to the magnitude ofide a direct way of investigating this question. These corre-
S,(f,), rendering them unusabjeln this representation, a lations can be quantified by calculating the covariance ma-
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trix. Adapting the analysis of Restét al.[18], we define the 1.0

elements of the matrix indexed by octavesndj as Experiment (a)

o 08
CMii:<(5Oi)2>/ > (P2 5 06
K 5 0.
%
and fori # j S 04
=
8 —&—1=6
CMij=((80;)(80)))/[{(80:)?){(50))*)1*2, § 02f oo
I —O0—TI=351
whereQ; is the noise power in octavie P, is the power in § 00k —o-T=43
one of the Fourier frequency bins summed in octavéO; e
=(0;—(0y)), and() indicate the average over the number A
of spectral sweeps. The diagonal elements are the variances, 1.0% ' ' ‘ PIM simulation (b
normalized to give unity for Gaussian noise. The off- smulation (b) |
diagonal elements are the correlation coefficients for fluctua- ¥ gl _
tions between octaves. The values can range frdimo —1, =l
corresponding to exactly positively and negatively correlated g
noise power, and should be zero for Gaussian noise. & 06r I
We find significant excess variancee., CM;;>1) for S
the four vibration intensitiesI{=4.3, 5.1, 5.9, and 6)&hat g (4t _
were previously studiefl3]. The variances increase mono- :S
tonically with octave number and typical values range from 2 o
1.5 to 10, which is much larger than the sampling error due S 02[ _a_»_gss
to finite number of samples. The excess fractional variance Independent Lorentzians
[17], ((60%) — = (P)2)1{(0;)?, is also largeg~0.1), consis- 0.0 . . . . .
tent with a small number of fluctuating entities producing 0 1 2 3 4 5 6
most of the noise. Octave Separation

If the diagonal terms show variances well in excess of the ] o
Gaussian value, then the correlation coefficients may be res- FIG. 3. Shown are the averaged correlation coefficients between

caled to include only the non-Gaussian component of th&on-Gaussian fluctuations of the power in different octaves of the
variance by C;; =CM-~(CM--CM~~)1/2/[(CM~-—1)(CM~~ ordinary power spectrum. For comparison, the thick solid line in
ij ij ii ij 1 1

_ 1)]1/2. In Fig. (a) the C;j’s with the same octave separa- both panels shows the expected correlations for a superposition of

. . Lorentzians with independently modulated intensities. The experi-
tion were averaged an d are plotted as a func.:t.|0n of octav ental datga) shows the correlations found near the bottom of the
s_eparatlon for the various. Th_ese show a pO_SItlve correla- column of beads for various shaking intensities. Pédmeshows the
tion of spectral power fluctuations between different oCtavesy o jations exhibited by simulations of a 1D parking-lot-model
with the magnitude of the correlation falling off as a function (gee text at various steady-state densitigs,

of octave separation.

For a continuous distribution of Lorentzian functidin®., can also arise for multistate fluctuatdrd0] because each
TSS9 that yield a 1f-like frequency dependence f&(f)  particular state partakes to different degrees in the different
and for which the amplitude of each Lorentzian is indepentelaxation eigenmodes. Thus, the spectral weight due to the
dently and randomly modulated, it has been sh¢®8] that  different relaxation modes itself fluctuates. As a result, there
Cij=r/sinh), wherer =In(f; /f;). This curve is plotted as a can be a negative contribution to the cross-correlation be-
thick solid line in Fig. 3 and its functional form is due to the tween frequencies near different relaxation rates. The central
self-convolution of individual Lorentzian power spectra. Fig- point is that theC;;(r) curves we observe indicate that the
ure 3a) shows that the correlations at large octave separationoise power fluctuations are not due to independent modula-
are considerably stronger tharsinh() for data taken near tions of the amplitudes of a collection of Lorentzians.
the bottom of the pile. AI'=5.9, even octave 1 and octave  Next, we compare the experimental results to the statisti-
7 have a correlation coefficient of 0.68, which is more than acal signatures of density noise in simulations of a one-
factor of 5 larger than independently modulated Lorentziansdimensional(1D) version of the parking-lot-mod&PLM).
These results indicate that the individual components thaThese simulations have reproduced many of the essential
contribute to the non-Gaussian fluctuations have broadeeatures found in the experiment. Details of the simulations
spectra, like those of multistate fluctuators having a range ofan be found in Refd.3,9,21. Briefly, the desorption pro-
characteristic frequencies. cess(parking spot opens gpn the PLM simulations is un-

ForI'=5.9 and 6.8, the two intensities for which we have restricted, whereas adsorpti¢a parking eventis subject to
the best statistics, the interoctave correlations were systenfree volume constraints, i.e., cars cannot overlap. For high
atically largest near the bottom and top of the pile. Howeveraverage densities, a net gain of one car requires a cooperative
Fig. 3(@) also shows thaCj;(r) falls off more quickly than rearrangement of many particles in order to form a space
r/sinh() near the middle of the pile fdr =5.9. Such effects large enough for another car to park. Despite the involve-
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ment of many particles, in practice the density fluctuationsof the system. It is perhaps not surprising that a 1D model
can be modeled as a superposition of independent fluctuatocempletely fails to capture the cooperative nature of fluctua-
[9]. tions, considering the failure of 1D models to predict long-
When the parking lot is relatively empty, only Gaussianrange order in phase transitions with finite-range interac-
noise is observed indicating that the number of independentgons.
fluctuating entities is large. Non-Gaussian noise sets in for |n conclusion, the use of the covariance matrix and
pss> 0.8, for whichCM;;>1 and the off-diagonal elements second-spectral techniques has revealed differences in ki-
are nonzero and positive. This is to be expected since, in thgetic hehavior between experimental data on granular com-
dense limit, the number of events that lead to a net change IBaction and a 1D version of the parking-lot-model often used
density is small(The experiment is most closely associatediy describe it. The main difference is that the density fluc-
with the dense limi). For stead_y—.state densities ranging from y,ations in the PLM can be regarded as a superposition of
0.37 to 0.88, the PLM exhibits a white excess secondingependent two-state systems, whereas the experimental
spectrum. This suggests that the PLM can be described by @ta cannot be decomposed into two-state systems on any
superposition of fixed TSS, in sharp contrast to the experime scale. In the experiment, the nontrivial correlations of
ment. Figure &) shows that the cross-correlation coeffi- ihe noise power as a function of octave separation are con-
cients for PLM fall off quickly with octave separation. This gjstent with multistate behavior with coupling between
behavior is also consistent with fixed, independent T53,  ¢yents on different time scales. Further studies of the second
the fact thatCjj(r) for the PLM is well described by gpecira on even longer experimental density-time series and
r/sinh(), particularly at the highest density;=0.88, may iy simulations of a 3D assembly of shaken hard sphgr&
be fortuitous. Hence, the noise power fluctuation in the PLM;| help elucidate the nature of the cooperative particle dy-
can be thought of as simply coming from independent puls¢amics and improve our understanding of granular dynam-
trains of different characteristics rates. ics. The analysis methods presented here should also prove

The discrepancies between the experiment and the 1Qyjyable for discriminating among different models for
PLM simulations probably indicate that in three dimensionsyranular compaction.

any local metastability, associated with some free volume,
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