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Density-noise power fluctuations in vibrated granular media
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The noise power spectra of the fluctuations in density of a vibrated column of granular material are found to
be time dependent. Spectral analysis of these noise power fluctuations shows nontrivial frequency depen-
dences. The noise powers at different frequencies are also found to fluctuate in a partially correlated way. In
most instances, the slow variations of the noise are strongly correlated over a broad range of frequencies. These
results indicate that highly cooperative interactions exist between fluctuators. In contrast, effects of such
strongly coupled fluctuators are absent in the one-dimensional parking-lot-model, one of the simplest systems
used to provide a model for recent granular compaction experiments.
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Many of the unusual static and dynamic properties
granular systems stem from the partial stability of a la
number of particle configurations~states! at steady-state
macroscopic densities@1#. Transitions among these variou
microscopic states are driven by nonthermal excitations~i.e.,
mechanical vibration! that lead to fluctuations in observab
quantities such as the density. Recent granular compac
experiments@2–4# have shown that the density of a vibrate
granular assembly exhibits glassy-like relaxation dynam
and a nontrivial fluctuation spectrum. At issue is the nat
of the microscopic dynamics that underlie the macrosco
response of a granular material subject to vertical vibrat
~tapping!.

Probing the interior structure of a three-dimensional~3D!
granular assembly, however, is severely hampered by
material’s opacity, although amenable to expensive imag
techniques@5#. A complimentary approach has been to co
pare more readily available data with simulations of mod
for vibrated powders. In many seemingly different tre
ments @3,6–13#, most of which are based on geometric
models of ‘‘parking’’ @6,9# or simulating the motion and sub
sequent relaxation of particles@7,8,10,11#, the resulting dy-
namics have some striking similarities to the experimen
results @2,3,14#. Similarities include: The logarithmic time
course of the density relaxation, irreversible-reversi
curves, and the power spectrum of density fluctuations. M
detailed characterization, however, is needed to determin
the models really capture the processes underlying the
served kinetic behavior.

We have previously reported the average properties of
noise power of density fluctuations in a vibrated column
beads @3#. In this paper we examine the time-depende
variations of the noise power and report on non-Gauss
properties, i.e., higher moment correlation functions of
density fluctuations. These properties can be used to di
guish between different kinetic models that exhibit identi
power spectra. The power spectrum of a signal is simply
Fourier transform of the two-point autocorrelation functio
For a Gaussian process, all higher-order correlations
uniquely expressible in terms of two-point correlation
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which thus contain all possible information about the sig
@15#. For systems in which the number of independent flu
tuating entities is relatively small, the non-Gaussian prop
ties of higher-order correlations contain additional inform
tion @16#. The statistical signatures we measure clea
demonstrate that the noise power is sensitive to a small n
ber of effective fluctuators that exhibit cooperative kinetic

The results presented here are based on time-series o
density fluctuations from previously reported work on gran
lar compaction@3#, and so we shall not comment extensive
upon the experiment. Briefly, the experiment involved mon
disperse spherical glass beads that were confined insi
cylindrical tube that was vibrated vertically with discre
shakes or ‘‘taps’’ with an intensity parametrized byG
5a/g, wherea is the peak acceleration during a tap andg is
the gravitational acceleration. The fraction of volume occ
pied by the beads, or equivalently, the density, was meas
after each tap near the top, middle, and bottom of the t
using a capacitance technique that averaged over rou
6000 beads. Here, we are concerned with the statistical p
erties of these density fluctuations after the system has
laxed to a steady-state densityrss(G).

Figure 1 shows an example of the complicated time
pendence of the noise power of the density fluctuatio
where time is measured in taps. Such time records are
tained as follows. A power spectrum,S( f ), of the density
fluctuations is calculated by squaring the absolute value
the Fourier transform of a 1008-point time series. Frequen
f, has units of inverse taps. To reduce the amount of num
to be dealt with and the fractional uncertainty associated w
sampling a random signal, each spectrum is summed
seven octaves,Oi with i 51,2, . . . ,7. Thelowest octave,
O1 , is roughly 0.004–0.007 taps21, consisting of four power
spectra points, and the highest octave,O7 , containing 192
power spectra points ranges from 0.19 to 0.38 taps21. This
procedure was repeated, up to 536 times for our long
density-time series, to generate the time series of oct
powers shown in Fig. 1. The noise power magnitude exhi
large variations as a function of time, often with strong co
©2001 The American Physical Society01-1
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relations of the noise power between differing octaves~e.g.,
see features indicated by the arrows in Fig. 1!.

The frequency dependence of the fluctuations in no
power can be used to distinguish between systems invol
interacting fluctuators and those involving the superposit
of a fixed set of independent two-state systems~TSS! @16#.
Simple superpositions of single-rate processes with a di
bution of rates are often invoked in models for electro
noise@16# and recently for granular compaction@6,9#. Each
TSS is fully characterized by two characteristic rates, 1t1

and 1/t2 , for switching between the two states and contr
utes a Lorentzian to the power spectrum, i.e.,S( f )5t/„1
14p2f 2t2

…. Since a TSS has no characteristic frequenc
much below 1/t51/t111/t2 , fluctuations in noise power in
some frequency band near 1/t will be nearly frequency inde-
pendent. In contrast, systems with more complicated fluc
tors, e.g., interacting TSS having different characteris
switching rates, often exhibit fluctuations in noise power t
are frequency dependent.

The frequency components to the noise power fluct
tions in Fig. 1 are clearly seen by Fourier transforming a
squaring the time record of the noise power for a given
tave having a logarithmic center frequency,f i . For each oc-
tave the so called ‘‘second-spectrum,’’S2( f 2 , f i), is calcu-
lated at the frequencyf 2 , determined by the time scale of th
fluctuations in Fig. 1. The excess second-spectrum of
density fluctuations is calculated by subtracting the expec
Gaussian contribution~see discussion below and Ref.@17#!
from S2( f 2 , f i). Since each data point making up an octa
time series requires 1008 density samplings, practical c
siderations limit the frequency span of the second-spect
to 64 spectral points. For clarity, we reduce the statist
fluctuations in amplitude at the expense of frequency res
tion by summing the excessS2( f 2 , f i) into octaves. The re-
sulting spectra for the highest octave,f 7 , are plotted in Fig.
2 for the two intensities,G55.9 and 6.8, which had the long
est octave time series.~For the lowest four octaves, th
Gaussian background is comparable to the magnitude
S2( f 2), rendering them unusable.! In this representation, a

FIG. 1. Noise power as a function of time~measured in taps! is
shown for experimental data taken atG55.9 near the bottom of the
column of beads. The noise power for each octave is normalize
the standard deviation of the expected Gaussian variance and o
for clarity. The logarithmic center frequencies~units of taps21! for
each octave are octave 1, 0.0053; 2, 0.0094; 3, 0.018; 4, 0.03
0.068; 6, 0.14; 7, 0.27.
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1/f spectral dependence will appear flat and a frequen
independent~white! spectrum will have slope11.

The dependence ofS2 on f 2 turns out to be nontrivial at
all three depths in the pile. ApproximatingS2( f 2) by a
power-lawS2} f 2

2b , the exponentb ranges from 0.5 to 0.8
near the bottom and middle of the pile. A power-law for
for S2( f 2) is less appropriate at the top of the pile whe
S2( f 2) apparently exhibits a broad maximum, reflective o
characteristic rate at which the ordinary power spectrum
being modulated. These second spectra rule out mo
based on simple superpositions of stationary independ
TSS, which would exhibit a white second spectrum@16#.

We now consider whether the individual components
S( f ), the components that are being modulated on lon
timescales, come from two-state systems that contrib
Lorentzians toS( f ) or from multistate fluctuators, which
contribute broader spectra. The correlations in the variati
in the noise power between differing frequency octaves p
vide a direct way of investigating this question. These cor
lations can be quantified by calculating the covariance m

by
set

5,

FIG. 2. Non-Gaussian~excess! second spectrum,f 2S2 , of the
fluctuations in the noise power in the frequency range 0.19 to 0
taps21 ~octave 7! for experimental data acquired near~a! the top,~b!
the middle, and~c! the bottom of the column of beads. The symbo
represent second-spectrum octave sums, so that aS2;1/f 2 depen-
dence appears horizontal on these plots. Similar dependencesS2

on f 2 are found for octaves 4 through 6. Second-spectra for
lower frequency octaves taken atG55.9 and 6.8, and for all octave
at G54.3 and 5.1, were dominated by the expected Gaussian
tribution due to the finite number of samples.
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trix. Adapting the analysis of Restleet al. @18#, we define the
elements of the matrix indexed by octavesi and j as

CMii 5^~dOi !
2&Y (

k
^Pk&

2,

and for iÞ j

CMi j 5^~dOi !~dOj !&/@^~dOi !
2&^~dOj !

2&#1/2,

whereOi is the noise power in octavei, Pk is the power in
one of the Fourier frequency bins summed in octavei, dOi
5(Oi2^Oi&), and^ & indicate the average over the numb
of spectral sweeps. The diagonal elements are the varian
normalized to give unity for Gaussian noise. The o
diagonal elements are the correlation coefficients for fluct
tions between octaves. The values can range from11 to 21,
corresponding to exactly positively and negatively correla
noise power, and should be zero for Gaussian noise.

We find significant excess variance~i.e., CMii .1) for
the four vibration intensities (G54.3, 5.1, 5.9, and 6.8! that
were previously studied@3#. The variances increase mon
tonically with octave number and typical values range fro
1.5 to 10, which is much larger than the sampling error d
to finite number of samples. The excess fractional varia
@17#, (^dOi

2&2(k ^Pk&
2)/^Oi&

2, is also large~;0.1!, consis-
tent with a small number of fluctuating entities produci
most of the noise.

If the diagonal terms show variances well in excess of
Gaussian value, then the correlation coefficients may be
caled to include only the non-Gaussian component of
variance by Ci j 5CMi j (CMii CMj j )

1/2/@(CMii 21)(CMj j
21)#1/2. In Fig. 3~a! the Ci j ’s with the same octave separ
tion were averaged and are plotted as a function of oct
separation for the variousG. These show a positive correla
tion of spectral power fluctuations between different octav
with the magnitude of the correlation falling off as a functio
of octave separation.

For a continuous distribution of Lorentzian functions~i.e.,
TSS! that yield a 1/f -like frequency dependence forS( f )
and for which the amplitude of each Lorentzian is indep
dently and randomly modulated, it has been shown@19# that
Ci j 5r /sinh(r), wherer 5 ln(fi /f j). This curve is plotted as a
thick solid line in Fig. 3 and its functional form is due to th
self-convolution of individual Lorentzian power spectra. Fi
ure 3~a! shows that the correlations at large octave separa
are considerably stronger thanr /sinh(r) for data taken nea
the bottom of the pile. AtG55.9, even octave 1 and octav
7 have a correlation coefficient of 0.68, which is more tha
factor of 5 larger than independently modulated Lorentzia
These results indicate that the individual components
contribute to the non-Gaussian fluctuations have broa
spectra, like those of multistate fluctuators having a rang
characteristic frequencies.

For G55.9 and 6.8, the two intensities for which we ha
the best statistics, the interoctave correlations were sys
atically largest near the bottom and top of the pile. Howev
Fig. 3~a! also shows thatCi j (r ) falls off more quickly than
r /sinh(r) near the middle of the pile forG55.9. Such effects
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can also arise for multistate fluctuators@20# because each
particular state partakes to different degrees in the differ
relaxation eigenmodes. Thus, the spectral weight due to
different relaxation modes itself fluctuates. As a result, th
can be a negative contribution to the cross-correlation
tween frequencies near different relaxation rates. The cen
point is that theCi j (r ) curves we observe indicate that th
noise power fluctuations are not due to independent mod
tions of the amplitudes of a collection of Lorentzians.

Next, we compare the experimental results to the stat
cal signatures of density noise in simulations of a on
dimensional~1D! version of the parking-lot-model~PLM!.
These simulations have reproduced many of the esse
features found in the experiment. Details of the simulatio
can be found in Refs.@3,9,21#. Briefly, the desorption pro-
cess~parking spot opens up! in the PLM simulations is un-
restricted, whereas adsorption~a parking event! is subject to
free volume constraints, i.e., cars cannot overlap. For h
average densities, a net gain of one car requires a cooper
rearrangement of many particles in order to form a sp
large enough for another car to park. Despite the invol

FIG. 3. Shown are the averaged correlation coefficients betw
non-Gaussian fluctuations of the power in different octaves of
ordinary power spectrum. For comparison, the thick solid line
both panels shows the expected correlations for a superpositio
Lorentzians with independently modulated intensities. The exp
mental data~a! shows the correlations found near the bottom of t
column of beads for various shaking intensities. Panel~b! shows the
correlations exhibited by simulations of a 1D parking-lot-mod
~see text! at various steady-state densities,r.
1-3
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ment of many particles, in practice the density fluctuatio
can be modeled as a superposition of independent fluctua
@9#.

When the parking lot is relatively empty, only Gaussi
noise is observed indicating that the number of independ
fluctuating entities is large. Non-Gaussian noise sets in
rss.0.8, for whichCMii .1 and the off-diagonal element
are nonzero and positive. This is to be expected since, in
dense limit, the number of events that lead to a net chang
density is small.~The experiment is most closely associat
with the dense limit.! For steady-state densities ranging fro
0.37 to 0.88, the PLM exhibits a white excess seco
spectrum. This suggests that the PLM can be described
superposition of fixed TSS, in sharp contrast to the exp
ment. Figure 3~b! shows that the cross-correlation coef
cients for PLM fall off quickly with octave separation. Th
behavior is also consistent with fixed, independent TSS@22#;
the fact that Ci j (r ) for the PLM is well described by
r /sinh(r), particularly at the highest density,rss50.88, may
be fortuitous. Hence, the noise power fluctuation in the P
can be thought of as simply coming from independent pu
trains of different characteristics rates.

The discrepancies between the experiment and the
PLM simulations probably indicate that in three dimensio
any local metastability, associated with some free volum
typically supports more than two metastable states. Furt
more, the high connectivity of 3D leads to coupling betwe
different metastable clusters, perhaps ones with signific
spatial separation. Preliminary studies of correlations
tween particle rearrangements in different regions of the
@23# show their spatial extent to extend up to the dimens
od

. E
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of the system. It is perhaps not surprising that a 1D mo
completely fails to capture the cooperative nature of fluct
tions, considering the failure of 1D models to predict lon
range order in phase transitions with finite-range inter
tions.

In conclusion, the use of the covariance matrix a
second-spectral techniques has revealed differences in
netic behavior between experimental data on granular c
paction and a 1D version of the parking-lot-model often us
to describe it. The main difference is that the density flu
tuations in the PLM can be regarded as a superposition
independent two-state systems, whereas the experime
data cannot be decomposed into two-state systems on
time scale. In the experiment, the nontrivial correlations
the noise power as a function of octave separation are c
sistent with multistate behavior with coupling betwe
events on different time scales. Further studies of the sec
spectra on even longer experimental density-time series
in simulations of a 3D assembly of shaken hard spheres@11#
will help elucidate the nature of the cooperative particle d
namics and improve our understanding of granular dyna
ics. The analysis methods presented here should also p
valuable for discriminating among different models f
granular compaction.
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